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Abstract
Although the cause of dopaminergic cell death in Parkinson’s disease (PD) remains unknown, oxidative stress has been
strongly implicated. Because of their ability to combat oxidative stress, diet derived phenolic compounds continue to be
considered as potential agents for long-term use in PD. This study was aimed at investigating whether the natural phenolic
compounds curcumin, naringenin, quercetin, fisetin can be neuroprotective in the 6-OHDA model of PD. Unilateral infusion
of 6-OHDA into the medial forebrain bundle produced a significant loss of tyrosine hydroxylase (TH)-positive cells in the
substantia nigra (SN) as well as a decreased of dopamine (DA) content in the striata in the vehicle-treated animals. Rats
pretreated with curcumin or naringenin showed a clear protection of the number of TH-positive cells in the SN and DA levels
in the striata. However, neither pretreatment with quercetin nor fisetin had any effects on TH-positive cells or DA levels. The
ability of curcumin and naringenin to exhibit neuroprotection in the 6-OHDA model of PD may be related to their antioxidant
capabilities and their capability to penetrate into the brain.

Keywords: Curcumin (Curcuma longa), naringenin, antioxidant flavonoids, 6-hydroxydopamine, neuroprotection,
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Introduction

Parkinson’s disease (PD) is a progressive neurodegene-

rative disorder characterized by a primary loss of

dopaminergic neurons in the substantia nigra pars

compacta (SNpc) resulting in a reduction in striatal

dopamine (DA) concentrations. Although the precise

mechanism of nigral cell death in PD remains unknown,

oxidative stress has been strongly implicated [1,2].

Postmortem studies in humans have shown that nigral

cell death in PD is associated with increased lipid

peroxidation [3], decreased reduced glutathione (GSH)

levels [4], enhanced superoxide activity in SN [5] and

increased levels of iron in SN [6]. At present, DA

replacement with levodopa or DA agonists is the most

effective treatment in PD. Although such drugs are

effective in the early stages of the disease, long-term

therapy has been associated with serious side effects.

Thus, a therapeutic approach of PD treatment could

include the modulation of oxidative stress. Phenolic

antioxidants including flavonoids are an extensive group

of naturally occurring compounds that are widely

distributed in plants as constituents of various fruits,

nuts and leaves etc. [7,8]. Flavonoids are potent

antioxidants and free radical scavengers, with efficacy

suggested to exceed the antioxidant capacity of vitamins

C and E [9–12]. Flavonoids are capable of chelating

metal ions, modify the activity of cellular antioxidants
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and antioxidant enzymes such as catalase and GSH

[13], modulating NO production, tumour necrosis

factor a secretion and nuclear factor kB (NFkB)

dependent gene expression in vitro [14], and have anti-

inflammatory properties, inhibiting the activities of

lipoxygenase and cyclooxygenase [15]. Since they show

very little toxicity even in long-term studies, they may be

appropriate for long term therapies in PD to possibly

slow down the rate of nigral cell loss.

Curcumin is abundant in turmeric (Curcuma longa),

a food plant that has been used in India for centuries

as a food preservative and medicinal agent. Narin-

genin, the predominant flavanone in grapefruit,

protects against oxidative processes associated with

chronic degenerative diseases [16]. Quercetin abun-

dant in apple, onions, tea, berries, in medicinal

botanicals including Ginkgo biloba, Sambucus Cana-

densis etc. has a demonstrated antioxidant [17,18]

and anti-inflammatory [17–20] properties. Fisetin, a

flavonol is abundant in citrus fruit and has Fe

chelating properties [18,21]. In this study, we sought

to determine whether the sub-chronic use of different

natural phenolic compounds provides a neuroprotec-

tion in the unilateral 6-hydroxydopamine (6-OHDA)

rat model of PD. The 6-OHDA induces a lesion in the

nigrostriatal dopaminergic pathway that results in a

progressive loss of dopaminergic neurons in the SNpc

by increasing the oxidative stress. Both the integrity

and functionality of the nigrostriatal pathways were

assessed by quantifying the number of dopaminergic

neurons in the SNpc and DA and its metabolites

dihydroxyphenylacetic acid (DOPAC) and homo-

vanilic acid (HVA) concentrations in the striata.

Materials and methods

Materials

Curcumin (98–99% of purity) was from Indo-World

Trading Company (New Delhi, India), naringenin,

quercetin, fisetin, 6-hydroxydopamine and all the

chemicals used were purchased from Sigma-Aldrich

(Dorset, UK), polyclonal TH antibody was obtained

from Chemicon (Harrow, UK), and the ABC

immunostaining kit from Vector Laboratories (Peter-

borough, UK).

Animals

Adult Sprague-Dawley male rats (Harlan, UK), of

initial body weight ,200 g were used. The animals

were kept under standard laboratory conditions

(temperature 21 ^ 18C; relative humidity 50 ^ 10%,

12–12 h light-dark cycle) and had free access to

drinking water and a standard pellet diet. All scientific

procedures were carried out with the approval of the

Home Office, UK. Rats were handled daily and

allowed one week to acclimatise after arrival before

any treatment.

Experimental design

The animals were randomly allocated to 5 experimen-

tal groups of six rats each: Group 1: control group

(drug vehicle, 10% Cremophor, p.o); Group 2:

curcumin (50 mg/kg dissolve in 10% of Cremophor;

p.o); Group 3: quercetin (20 mg/kg dissolve in 10% of

Cremophor, p.o); Group 4: naringenin (50 mg/kg

dissolve in 10% of Cremophor; p.o); Group 5: fisetin

(20 mg/kg dissolve in 10% of Cremophor; p.o). Rats

were treated with the flavonoids at the concentration

as above or drug vehicle by gavage, daily for 4 days

prior to lesioning. The dose of each of these

compounds was based on either the study with

tangeretin [22] or from the literature.

Animal treatment

On the 4th day of treatment, one hour after final

dosing, rats received an unilateral infusion of 6-

OHDA (12mg dissolved in 4ml 0.1% ascorbic

acid/saline solution) into the medial forebrain bundle

(stereotactic co-ordinates: 2.2 mm anterior, 1.5 mm

lateral from bregma and 7.9 mm ventral to dura with

ear bars 5 mm below incisor bars [23] under

isofluorane anaesthesia. One week after surgery,

animals were killed by cervical dislocation, brains

rapidly removed and cut at the level of the

infundibular stem to separate the hindbrain block

(containing the SN) and the forebrain block (contain-

ing the striata).

TH-immunohistochemistry

Tyrosine hydroxylase (TH) is the rate limiting enzyme

in DA synthesis and was used as a marker for DA

neurons. Hindbrain was fixed for 7 days in 4%

paraformaldehyde, then cryoprotected with 30%

sucrose solution. Free-floating 20mm sections cut on

a bright cryostat at 2228C were blocked in 20%

normal serum in PBS and then processed for TH

immunohistochemistry using a polyclonal rabbit anti-

TH antibodies followed by biotinylated anti-rabbit

IgG. Sections were then incubated with Vector ABC

kit and finally visualized with 3-30-diaminobenzidine

and H2O2. TH-positive cells were visualized under

bright field illumination using a Nikon Eclipse E800

microscope and counted manually at region B

(25.1 mm with respect to Bregma) of SNpc [24].

Due to the ease of identification of the dopaminergic

neurons within the SNpc, low numbers of cells

involved that can be counted in their entirety without

operator bias, non-stereological counting techniques

were employed, as with most studies in the field.
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HPLC analysis

Both striata were dissected out from the forebrain

block, flash frozen and stored separately at 2808C

until analysis. Striatal DA and DOPAC and HVA

concentrations were quantified by HPLC-ECD, as

described elsewhere [25]. Briefly, striata were indivi-

dually weighed and homogenized in 0.5 ml of ice-cold

buffer (50 mM trichloroacetic acid, 0.5 mM, EDTA,

0.5 pmol/ml 3,4-dihydroxybenzylamine hydrobromide

as an internal standard) for 20s using ultrasonicator

tissue disrupter (Soniprep, Sanyo, UK). After keeping

on ice for 10 min for extraction, the samples were

centrifuged (Heraeus, UK) at 1000g for 10 min, at

48C. Supernatants were filtered (0.45mm, Whatman,

UK) and loaded onto an autosampler (Gina 50,

Gynkotek, UK) kept at 58C on-line with HPLC

system. The analytes were separated on a Altex 3mm

ODS column (4.6 mm £ 7.5 cm, Beckman, UK) by

using a mobile phase consisting of 0.1 mM KH2PO4,

0.1 mM EDTA, 1 mM octyl sodium sulfonate,

10% methanol V/V (pH 2.75 adjusted with ortho-

phosphoric acid; flow rate 0.9 ml/min) and Coulo-

chem-II detector with electrode one set at 20.20 V

and electrode two at þ0.34 V with respect to

palladium reference electrode (ESA Analytical).

Statistical analysis

Percentage was calculated by comparing lesioned and

non lesioned sides of the brain. The effect of the drug

treatment was analyzed by comparing both the loss of

TH-positive cells in the different flavonoid-treated

groups vs. control group and the loss of DA

concentrations and its metabolites in the striata.

Data are expressed as means ^ s.e.m. Data were

analyzed by student’s t-test (two-tailed). P value less

than 0.05 was considered as significant.

Results

TH-positive cells in the SNpc

The cytoplasm and fibers of dopaminergic neurons were

specifically stained following TH-staining. Following

injection of 6-OHDA into the medial forebrain bundle,

,50% of dopaminergic neurons were lost in the lesioned

SNpc in control group when compared to the unlesioned

side of the brain (Figure 1A). The loss of TH-positive

cellswas significantly decreased following treatment with

flavonoids curcumin and naringenin, indicating a

neuroprotective effect. Indeed, pretreatment with

curcumin and naringenin significantly reduced the

mean percentage TH-positive cell loss (expressed as

the percentage of the number of TH-positive cells in the

intact SNpc) when compared to control group; in the

curcumin-treated group (21 ^ 3% vs. 50 ^ 3%;

p , 0.005), in the naringenin-treated group (30 ^ 3%

vs.50 ^ 3%; p , 0.02) for drug-treated vs. control

animals respectively (Figures 1 and 2). However,

administration of quercetin or fisetin failed to prevent

this loss of TH-positive cells (Table I). There was,

however, a significant decrease in the number of TH-

positive cells in the lesioned SNpc compared to the

unlesioned side in quercetin and fisetin-treated group

(,50%; p , 0.02) but there was no difference when

compared to control group (,55%; unlesioned vs.

lesioned side, respectively) (Table I).

Striatal concentration of DA and its metabolites DOPAC

and HVA

The injection of 6-OHDA onto the medial forebrain

bundle caused a marked reduction in the concen-

tration of DA in the striatum (by 70 ^ 7%),

(Figure 1B). This is consistent with the significant

loss of TH-positive cells observed in the SNpc.

Treatment with naringenin or curcumin significantly

attenuated the loss of DA after 6-OHDA adminis-

tration (29 ^ 6% and 29 ^ 3% respectively; p ,

0.05 vs. control group) (Figure 1B) whereas, after

quercetin or fisetin administration there was no

Figure 1. Pretreatment with curcumin and naringenin (50 mg/kg,

4 days, p.o.) reduces the mean percentage loss of nigral TH-positive

cells and striatal DA levels after 6-OHDA injection. Histogram

represents the percentage loss of TH-positive cells in the SNpc (A)

and DA levels in the striata (B). The mean percentage loss of TH-

positive cells and DA levels in curcumin and naringenin treated

animals was compared to that of vehicle-treated group. Data shown

are expressed as the mean cell loss as a percentage of cells in the

lesioned SNpc compared to unlesioned side ^s.e.m. * p, 0.02 and

** p , 0.005 vs vehicle-treated group after unpaired Student’s t-

test; n ¼ 6 rats/group.

Flavonoids as neuroprotective agents in Parkinson disease 1121
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significant difference on the concentration of DA in

the striata in relation to control group (Table I). In

relation to DOPAC and HVA concentration, analysis

of control animals showed that administration of 6-

OHDA produced a significant loss of striatal DOPAC

and HVA (from 2.44 ^ 0.41 to 0.73 ^ 0.12; p , 0.02

and from 0.88 ^ 0.02 to 0.46 ^ 0.08, respectively;

p , 0.02 vs. unlesioned side of the brain). Treatment

with curcumin and naringenin attenuated this loss of

DOPAC (Table II). After treatment with curcumin

and naringenin there was no significant difference in

the concentration of DOPAC in the unlesioned striata

vs. lesioned one (2.06 ^ 0.14 vs 1.20 ^ 0.33 and

2.64 ^ 0.36 vs. 1.78 ^ 0.19, respectively) but a

significant difference was observed compared to

control group ( p , 0.01). Curcumin slightly reduced

the loss of HVA in the striata compared to control

group in a non significant way. Neither quercetin nor

fisetin had any effect on the concentration of striatal

DA and its metabolites. Finally, no changes were

observed in the DA turnover (expressed as the

concentration ratio of dopamine relative to its primary

metabolites DOPAC and HVA in each sample) in the

lesioned side of the brain compared to the unlesioned

side neither in control groups nor in curcumin,

naringenin, quercetin and fisetin-treated animals.

This indicates that the restoration of DA concen-

trations observed was due to neuroprotective effects

rather than compensatory effects by remaining TH-

positive cells after 6-OHDA lesioning.

Discussion

Sub-chronic administration of naringenin or curcumin

significantly attenuated the loss of dopaminergic

neurons in the SNpc and the decrease in striatal DA

concentrations observed after the 6-OHDA lesion.

However, quercetin and fisetin were unable to attenuate

the loss of TH-positive cells in the SNpc or the loss of

DA levels in the striatum in our in vivo model.

The 6-OHDA model of nigral injury has been

utilized for many years as a classical experimental

model of Parkinsonism [26]. The unilateral stereo-

taxic injection of 6-OHDA into the medial forebrain

bundle of the rat leads to a progressive death of the

dopaminergic nerve cells and a corresponding

depletion of DA in the corpus striatum [27,25].

6-OHDA is thought to produce toxicity through the

generation of oxidative stress and the production of

ROS [28,29], since 6-OHDA can auto-oxidize to

semiquinone and superoxide radical (Oz2
2 ). Sub-

sequent reactions may result in the formation of the

more cytotoxic OH radicals through Fenton chemistry

involving H2O2. The number of nigral TH þ cells in

the SNpc and the striatal DA loss due to 6-OHDA

injection was significantly decreased by pretreatment

with naringenin or curcumin, indicating a possible

scavenging of hydroxyl radicals.

Tea extracts exhibit neuroprotection against

6-OHDA-induced human neuroblastoma (NB)

SH-SY5Y and pheochromocytoma (PC12) cells

Figure 2. Micrographs of rat substantia nigra pars compacta

sections immunostained for tyrosine hydroxylase. A. Vehicle

treatment. B. Curcumin treatment. C. Naringenin treatment.

Table I. Effect of quercetin and fisetin on nigral TH-positive cells and striatal DA levels after 6-OHDA lesioning.

Treatment
TH-positive cells in the SNpc Striatal DA level (ng/mg of tissue)

Unlesioned SNpc Lesioned SNpc Unlesioned striata Lesioned striata

Control 135 ^ 6 60 ^ 8 ** 10.7 ^ 0.49 3.9 ^ 1.2 **

Quercetin 140 ^ 9 72 ^ 12 ** 13.7 ^ 0.98 4.0 ^ 1.2 **

Fisetin 121 ^ 7 62 ^ 7 ** 10.9 ^ 0.49 3.8 ^ 1.6 **

Data show the number of TH-positive cells in the lesioned and unlesioned SN following treatment with quercetin and fisetin (20 mg/kg, 4

days, p.o.) and control group and the levels of DA in both striata. The number of TH-positive cells in the lesioned SNpc was compared to its

unlesioned side for each group of animals and to control group. ** p , 0.02 vs vehicle-treated group after unpaired Student’s t-test. Each

result represents the mean ^s.e.m; n ¼ 6 rats per group.
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damage culture [30,31]. Similarly, treatment of rats

with tangeretin [22] or with the flavonoid rich EM-X

drink [32] were protective in this model.

The mechanisms by which curcumin can exert a

neuroprotective effect are not fully defined. Curcumin

is both a potent antioxidant [33,34] and an effective

anti-inflammatory agent [35,36]. Since PD has been

linked to increased oxidative damage and anti-

inflammatory process, curcumin may be effectively

used in the treatment of this disease. Structurally,

curcumin does not have the typical ring structure of

polyphenol compounds, possessing a diketone group

and two phenol rings that act as electron traps to

prevent H2O2 production and to scavenge OHz and

superoxide radicals. Besides, both the hydroxyl groups

and the b-diketone moiety of curcumin are involved in

metal– ligand complexation [37]. Curcumin can

chelate Fe2þ (known to be increased in PD) needed

for Fenton reaction for generating OH radicals [38].

Thereby, an alternative possibility is that by chelating

Fe, curcumin may inactivate any toxic effects of this

metal. Curcumin is several times more potent than

vitamin E as a free radical scavenger [39], protects the

brain from lipid peroxidation [40], inhibits the nuclear

factor kB-mediated transcription of inflammatory

cytokines [41], inducible NO synthase [42] lipox-

ygenase and cyclooxygenase 2 [43]. Dietary sup-

plementation of curcumin to mice enhanced the

activity of glutathione peroxidase, glutathione

reductase and catalase in liver and kidney [44]. A

significant increase in reduced GSH levels, superoxide

dismutase and catalase activities were also observed in

the brain in rats simultaneously treated with curcumin

and lead [45]. It has also been reported that curcumin

protects PC12 and HUVEC cells from Ab (1–42)

insult [46], inhibits formation of b-amyloid fibrils [47]

suppresses indices of inflammation and oxidative

stress in the brains of APPs mice, factors implicated in

Alzheimer’s disease [48,49] and significantly attenu-

ated MPTP-induced striatal DA depletion in mice

[50]. Due to its anti-tumor activity, relative safety, and

its long history of use, curcumin is currently being

developed for clinical use as a cancer chemopreventive

agent [48]. Studies have also shown that curcumin is

relatively nontoxic and has few side effects [51,52].

Toxicity studies with very high dose of curcumin

(2000 mg/kg), which greatly exceeds the low dose used

in this study (20 mg/kg), revealed non-toxic effects

and a low ulcerogenic index [53].

Naringenin was moderately nuroprotective against

6-OHDA-induced toxicity. This protection although

significant was moderate. This lower antioxidant

activity could be related to its structure. The presence

of the 2, 3-double bond in conjugation with a 4-oxo

group in the structure naringenin has been suggested

to be important for its antioxidant activity. Naringenin

has neuronal protective effect against oxidative cell

death induced by Ab peptide in the PC12 cells [54],

can partially suppress the Fenton reaction character-

istic of Fe-ATP [55]. Naringenin or its glycoside

naringin are reported to increase in the enzyme

activities of superoxide dismutase and catalase

activities and to an up-regulate the expression of the

genes for superoxide dismutase, catalase and gluta-

thione peroxidase in high cholesterol-fed rabbits and

rats [56,57]. The introduction of naringenin into a-

tocopherol-deficient microsomes has been shown to

restore the GSH-dependent protection against lipid

oxidation, providing evidence that naringenin can

assume the role of a-tocopherol as a chain-breaking

antioxidant [58]. Besides, it has been suggested that

naringin has a poor blood-brain barrier (BBB)

penetration whereas, naringenin exhibited high per-

meability across the in vitro and in situ BBB models

[59,60]. The uptake of naringenin into the cerebral

cortex and the striatum [61,62] suggests that

naringenin should afford neuroprotection within the

CNS. The pharmacokinetics and metabolism of

dietary flavonoids is widely reviewed and that of

Manach and Donovan [63] is worthwhile to the

reader. Quercetin and fisetin did not protect dopa-

minergic neurons after 6-OHDA, a result that may

have been determined by variable metabolism by the

intestinal flora and systemic availability and ability

to cross the blood brain barrier [63]. Thus phenolic

compounds such as curcumin and naringenin

Table II. Effect of curcumin and naringenin on striatal levels of DA, DOPAC and HVA after 6-OHDA lesioning.

Striatal level (ng/mg of tissue)

DOPAC HVA

Treatment Unlesioned striata Lesioned striata Unlesioned striata Lesioned striata

Control 2.44 ^ 0.41 0.73 ^ 0.12 ** 0.88 ^ 0.02 0.46 ^ 0.08 **

Curcumin 2.06 ^ 0.14 1.20 ^ 0.33 # 0.76 ^ 0.05 0.52 ^ 0.12

Naringenin 2.64 ^ 0.36 1.78 ^ 0.19 # 0.75 ^ 0.05 0.62 ^ 0.04 *

Data represent levels of DA and its metabolites in the both striata following treatment with curcumin and naringenin (50 mg/kg, 4 days, p.o.).

* p , 0.05 and ** p , 0.02 vs. unlesioned side; # vs. vehicle-treated group after unpaired Student’s t-test. Each result represents the mean

^s.e.m; n ¼ 6 rats per group.

Flavonoids as neuroprotective agents in Parkinson disease 1123
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conferred neuroprotection against 6-OHDA-induced

toxicity in vivo. This indicates the possibility that

dietary compounds can be potential candidate for

consideration as a dietary supplement in the treatment

of PD. Indeed studies indicate that there is a reduced

age-adjusted prevalence of Alzheimer’s disease in

India [16,20], as well as a lower prevalence of PD

[17,21]. Further studies need to be done in order to

evaluate the molecular mechanisms of neuroprotec-

tion of these compounds.
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